معرفی و بکارگیری روش تصمیم‌گیری چندشاخه‌ای «آرسته» جهت رتبه‌بندی پژوهش‌کدهای تحقیقاتی

نویسنده‌گان: مریم محامدپور 1 و عزت‌آبادی افشاری‌زاده 2
1. کارشناس ارشد مدیریت صنعتی دانشگاه تهران
2. عضو هیات علمی دانشگاه تهران

کچیده
این مقاله با هدف معرفی و بکارگیری روش تصمیم‌گیری چندشاخه‌ای «آرسته» با رویکردهای ارورپایی و منتی بر ساختار ترکیبی و روابط بین‌تری بوده و به رتبه‌بندی پژوهش‌کدهای مرکز تحقیقات مخابرات ایران می‌پردازد. بدین منظور ابتدا با کسب نظر از میدانی و خبرگان مرکز شاخه‌ای ارورپایی کنندگان استخراج می‌شود. سپس با کردارهای داده‌ای از پژوهش‌کدهای این مرکز ماتریس تصمیم‌گیری تحلیلی و بررسی اساس از روش آنتروپی شانون برای محاسبه ارزش‌های استفاده می‌شود. با به‌دست‌آمدن وزن شاخص‌ها و ماتریس تصمیم‌گیری، با روش چندشاخه‌ای «آرسته» رتبه‌بندی پژوهش‌کدهای تحقیقاتی انجام می‌شود. در این روش شاخص‌ها و گزینه‌ها پس از تشکیل ساختارهای ترکیبی خود توسط یکی از حالت‌های مبتدی، فاصله از مبدا فرضی تعیین خاصل‌شده و یافته از شاخص‌ها می‌شود. سپس بر اساس فاصله‌ها از مابین رتبه‌بندی پژوهش‌کدها توسط یک روش تصمیم‌گیری چندشاخه‌ای دیگر برای مقیاس‌بندی نتایج به‌دست‌آمده از روش آرسته ارائه می‌شود.

کلیدواژه‌ها: تصمیم‌گیری با شاخص‌های چندشاخه، روش آرسته، رتبه‌بندی، روش آنتروپی شانون

مقدمه
به طور کلی مسائل تصمیم‌گیری با شاخص‌های چندگانه متشکل از مجموعه‌ای از گزینه‌ها (مجموعه ال‌اف) و مجموعه‌ای از شاخص‌ها (مجموعه ب) می‌باشد. تا انتخاب مختلف حالت‌های زیبر تربری بررسی قرار دیده:
1- معرفی زیرمجموعه‌های از ال‌اف که یک توجه به ب
2- تقسیم مجموعه ال‌اف به چند زیرمجموعه بر اساس نکاتی مشخص (مطالعه ضرب کردن);
3- رتبه‌بندی مجموعه ال‌اف از بهترین تا بدترین گزینه‌ها (مطالعه رتبه‌بندی).

به پرسی سایت رتبه‌بندی در جهان، با موسسات
روش ثانویه تحقیق

به منظور دستیابی به مدل برای ارزیابی و رتبه‌بندی پژوهش‌های مرکز تحقیقات مخابرات ایران و با توجه به وجود فاوت میان این پژوهش‌های در برخی موارد، به شاخه‌ها و ایزدانه‌های نیاز اساس، در این راستا پاسخ‌گویی به سوالاتی از قبیل "شاخه‌های مناسب برای رتبه‌بندی پژوهش‌های مرکز تحقیقات مخابرات ایران چگونه است؟" و "رتبه‌بندی پژوهش‌های مرکز تحقیقات مخابرات ایران چگونه است؟"، در جهت تحقیق اهداف تحقیق ضروری است. بدین منظور از 13 شاخه ارزیابی عملاً مناسب از این مرکز تحقیقات استفاده شده است. این اکتشاف هنوز توسط گروه اولیه با استفاده از نظرسنجی استقرار و توزیع پرسشنامه میان 35 نفر از خبرگان و مدیران ارشد مرکز تحقیقات نهایی شده که به شرح زیر است:

1/3. درصد پژوهش‌های خانه‌پرداز در چارچوب بودجه و زمان به کل پژوهش‌های پژوهشکده;

2/3. درصد پژوهش‌های که به بهره‌برداری رسیده به کل پژوهش‌های پژوهشکده;

3/3. درصد پژوهش‌های مرتبط با ماموریت پژوهشکده به کل پژوهش‌های;

4/3. درصد هزینه‌های انجام تحقیقات به کل بودجه ماصوب پژوهشکده;

5/3. درصد بودجه پژوهش‌های کاربردی به کل بودجه پژوهش‌های;

6/3. متوسط زمان تاکید در تحول پژوهش‌های;

7/3. درصد رشد سالانه انجام تایید نمونه با ارائه استندار;

8/3. متوسط زمان بررسی یک طرح پیشنهاد ارجاعی;

9/3. درصد تعادل مطالعات حاصل از پژوهش‌های انجام شده به تعداد پرسنل پژوهشکده;

10/3. درصد پژوهشگران دارای تحصیلات فوق لیسانس و دکتری به کل پژوهشگران در پژوهشکده;

معنی‌ریا ارتباطی کننده‌ای مواجه می‌شود که دارای شاخه‌های مختلفی بوده و به گونه‌ای خاص رتبه‌بندی می‌کند. این موانع با گزینش‌های حوزه‌های مشترک ارزیابی و رتبه‌بندی شاخه‌های مربوط یا استخراج و بر اساس با استفاده از ابزار موجود رتبه‌بندی انجام می‌دهند. از طرفی در ادابه موضوع روش‌های انگلیزی گفته شده و در رویکرد اوروبا (فناوری) و رویکرد آمریکایی تفسیر می‌شود. رویکرد اوروبا می‌تواند در روابط برتری بر روی شاخه‌ها و گزینه‌ها بوده که به روش از آنها عبارتند.

(Elimination Et Choice Translating from the other) (Preference Ranking, ELECTRE, Reality(ELECTRE) Organization Method for Enrichment Evaluation and Literature review) آمریکایی، توابع مطلق و وزن‌دهی شده و بر اساس مسائل تصمیم گیری با شاخه‌های چندگانه حل می‌شوند که تعدادی از آنها عبارتند از: فاکتور حل‌ساز (Analytical Hierarchy Process(AHP) (Simple Additive Weighing (Method(SAW)) مجموع وزن ساده (Multi-Attribute Utility Theory(MAUT))}

مرکز تحقیقات مخابرات ایران به عنوان یک سازمان پژوهش‌محور به مدلهای ارتباطی پژوهش‌های خود تیز دارد تا یک طرف آنها رها ارتباطی کرد و از طرف دیگر فضایی برای از واحدهای زیر مجموعه فراهم آورده در این مقاله با معرفی یکی از روش‌های تصمیم گیری با شاخه‌های چندگانه، آرمسترژ، و یکگریچ برای رتبه‌بندی پژوهش‌های مرکز تحقیقات مخابرات ایران، تواین آن را به عنوان یک روش مناسب برای رتبه‌بندی به معیار مانند خرید می‌دهد. بنابراین منظور مدنظر در ذکر مقدمه، در بخش دوم از این مقاله، در ادامه به منظور پایدارسازی این روش برای مرکز، در بخش نهایی بخش مقدماتی روش وزن‌دهی نشان و رتبه‌بندی پژوهش‌های با آرمسترژ در بخش پنجم انجام می‌گردد.
رویکرد تصمیم گیری چند شاخه‌ای آرسته‌ی

آگ در یک مطالعه‌ای گروهی که هدفشان
بوده، برای هر یک از شاخ‌ها که هدفشان
باشد، می‌توانند ارزیابی‌های ارتباطی را می‌توانند
تعیین کنند که در گروه آرسته‌ی آرسته‌ی
تسهیل گردیده‌ی باشد.

گروه‌هایی که تا تحقیق پژوهش‌ها می‌باشند، با یک ترتیب از شاخ‌های ۱۳ گروه‌ها در
هر کیفیت از پژوهش‌های یک‌پاره به منظور تحلیل ماتریس
تصمیم گیری انجام شده‌اند.

جدول ۱: ماتریس تصمیم گیری

<table>
<thead>
<tr>
<th>شاخه</th>
<th>y_{11}</th>
<th>y_{12}</th>
<th>y_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{10}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{9}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{8}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{7}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{6}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{5}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{4}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{3}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{2}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
<tr>
<td>y_{1}</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
<td>درصد تعاملات درصد</td>
</tr>
</tbody>
</table>
در مقاله دیگری که آن را در مجله معتبری در مورد ترکیب "لیت" به پایه رساند، با توجه کامل اقدامی به تشریح آرتیسم نموده و در قالب یک مطالعه انجام دادیه‌ای، به‌طور کامل و در مورد روش ایجادی خود، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.

به‌طور کل روش ترکیبی "الف" را می‌گیرد. این روش ترکیبی "الف" به‌طور کل در دستگاه‌های بزرگ‌گیری، واقعاً را حذف کرده و وی در معرفی روش ایجادی خود از مجموعه "الف" این مجموعه "الف" را دو می‌گیرد.
برای دستیایی به شرايط عمومی تر رابطه ۵ به شکل زیر تغییر می یابد:
\[d^*(0, m_k) = \frac{\sqrt{\alpha R + \alpha_n(m)^2}}{\sqrt{R_k + \alpha_n(m)^2}} \]

که در نهایت اگر از مدل انتخاب گذشته شد و \(\alpha \) اضافه سود، رابطه ۷ حاصل می شود:
\[d^*(0, m_k) = \frac{\sqrt{(\alpha R + \alpha_n(m)^2)}}{(1-\alpha) R_k + \alpha_n(m)^2}} \]

در این راستا با توجه به برخی از مقادیر، فاصله اب شورت زیر تعریف می شود [۴]:
\[R = 1 \rightarrow d^* = \text{میانگین حسابی موزون} \\
R = -1 \rightarrow d^* = \text{میانگین هندسی} \\
R = 2 \rightarrow d^* = \text{میانگین مربعات} \\
R = -\infty \rightarrow d^* = \min(\alpha_1, \alpha_2(m)) \\
R = +\infty \rightarrow d^* = \max(\alpha_1, \alpha_2(m)) \]

انجام رتبه بندی مطلقي \(R(m_k) \) بر روی فواصل برآورده بر کمک روش میانگین رتبه‌های بس پسون به تعیین فاصله تصاویر تک اعضای ماترس مقویت از مدل از طریق یکی از جهت‌های فوق، رتبه بندی مطلقي فاصله انتخاب می شود. به طور کلی انتخاب هریک از حالت‌های فوق و با مقدار مختلف \(R \) برای تصویرکردن و تعیین فواصل فاصله یکتا به هدف تأثیر گذاری بر میانگین عمیق از هم و به از آنجا مقدار دقیق میانگین عمیق آنها نسبت به هم یومده و از آنجا که مقدار دقیق در روش "\(R_m \)" تعیین ندارد: در آدامه کار فواصل با کمک روش میانگین رتبه‌های بس پسون رتبه بندی و بدون ترتیب ساله دوباره به‌طور ترتیبی آن بازگشتاب داده می‌شود.

نتیجه این رتبه بندی پایا با اختصاص رتبه حاصل - شده از روش پرسی به فاصله \(d^*(0, m_k) \) به صورت است به مساله توان مانند باشیم:
\[R(a_1) < R(a_2) \iff d^*(0, a_1) < d^*(0, a_2) \]

برندهای به دست آمده، رتبه‌های مطلقي نامیده شده و
\[1 \leq R(m_k) \leq m.k \]

\[R(m_k) \] (k تعداد گزینه‌ها و \(k \) تعداد شاخص‌ها و \(M \) رتبه‌های مطلقي هستند.

فواصل این تصاویر از مبدا صفر که با داده شده، تعیین می شوند به طوریکه داریم:
\[1 \text{ if } a \in R \text{ then } d(\alpha_1) < d(\alpha_2) \]
\[1 \text{ if } \alpha_1 < \alpha_2 \text{ and } 1P2 \text{ then } d(\alpha_1) < d(\alpha_2) \]

\[\text{Criteria importance} \]

شکل ۱. نمونه‌ای از ماترس موقیت [۳]

عمل برآورد فواصل \(d(0, m_k) \) که مفهوم آن در فوک بیان گردیده: به حالتهای مختلفی انتخاب می شوند که عبارتند از: مستقيم خطي، غيرمستقيم خطي، غیرخطي، در آدامه به معرفی این حالتهای مورد برخوردها [۶]:

الف) مستقيم خطي: در این حالت به منظور انتخاب برآورد فاصله از رابطه زیر پیروی می کنیم:
\[d(0, m_k) = \frac{1}{\sqrt{(\alpha_1 R + \alpha_2(m)^2} \]

ج) برآورد غیرمستقيم خطی در این حالت فواصل تصاویر از نقطه مبدأ به صورت زیر محاسبه می شوند:
\[d^*(0, m_k) = \sqrt{\alpha_1 R + \alpha_2(m)^2} \]

\[\text{در رابطه فوق } \alpha \text{ به عنوان ضریب اضافه می شود.} \]

ج) برآورد غیرخطي: در حالت تصویرکردن غیرخطي جهت تعیین فاصله تصاویر از مبدا مورد نظر از رابطه زیر استفاده می شود:
\[d^*(0, m_k) = \sqrt{\alpha_1 R + \alpha_2(m)^2} \]
روش آرتسبه به طور مستقل صورت می‌پذیرد. روشن‌العهد در تهیه‌ای اطلاعات، با بهبود عده اطمنان اکست قابلیت اینگونه ریپبرده و تعداد اطمنان‌ها عموماً تاثیرگذاری بر قابلیت اطمنان آن نخواهد بود.

آتروپی در تئوری اطلاعات می‌تواند اثرات برای مقیاس واحد اطمنان لذت بدست پیدا کند که این مقیاس اطمنان در صورت پیش‌بودن به طور مرتبی انتخاب گامه‌ای پیروی کند که توزیع فراوانی تیزتر باشد. این را نخواهیم می‌شنم [6، 7] :

\[p_j = \frac{a_{ij}}{\sum_{i=1}^{m} a_{ij}} \] \hspace{1cm} (11)

عنوان متریس تصمیم گیری بوده و بدون ترتیب

نزلم می‌شنود. به عنوان مثال خواهیم داشت:

\[p_{11} = \frac{35}{167} \approx 0.21 \]

آتروپی شاخص زمینه (E) برای تمام شاخص‌ها از رابطه (12) و با دانستن 0.621 محاسبه می‌شود:

\[E_j = -k \sum_{i=1}^{m} [p_{ij} \ln p_{ij}] \] \hspace{1cm} (12)

مقداری ثابت است و به منظور این که بین صفر و یک باشد. اعمال می‌شود. برای نمونه در شاخص اول داریم:

\[E_i = -0.5 \left[0.11 \ln(0.11) + 0.12 \ln(0.12) + 0.12 \ln(0.12) \right] = -0.396 \]

سپس مقدار (d_{ij}) با عدم اطمنان و نیز مقیاس وزن برای شاخص‌ها مطابق با روابط 13 و 14 به‌دست می‌آید:

\[d_j = 1 - E_j \] \hspace{1cm} (13)

\[w_j = \frac{d_j}{\sum_{j=1}^{n} d_j} \] \hspace{1cm} (14)

جمع‌بندی رتبه‌بندی هر مطلوب حاصل شده برای هر یک از گزینه‌ها نسبت به تمام شاخص‌ها پس از محاسبه و تثبیت کلیه رتبه‌های مطلوب برای تمام گزینه‌ها نسبت به هرکدام از شاخص‌ها به طور جداگانه به دست آورده می‌شود. بنی‌برای هر گزینه‌ای m رابطه زیر جمع‌بندی نهایی را ارائه می‌دهد:

\[R(m) = \sum_{k=1}^{n} R(m_k) \] \hspace{1cm} (10)

شیوه تعریف گزینه بر اساس مجموع رتبه‌ها برای هر گزینه: به دنبال ترتیب یک ساختر ترتیبی از اولین براساس (m) و با در نظر گرفتن روابط زیر تعریف -

\[\text{شیوه:} \]

\[\text{به نحوی که گزینه‌که} \ R(m) \ \text{مرتبه‌انهکوچکتر}
\text{باشد. مناسب‌تر بوده و رتبه بهتری بدان اخضاع}
\text{می‌یابد: بنوی گزینه‌ای گزینه‌بر اکست که مجموع}
\text{رتبه‌های مطلوب در همه شاخص‌ها از سایر گزینه‌ها،}
\text{کمتر باشد. [3، 4، 5]}
\]

وزن‌دهی شاخص‌ها به روش آنترپوپی شانون
برای یکارگیری روش آرتسبه به وزن شاخص‌های ازبین که تنهایش به‌وجود و نیز انتفاضه از یکی از روشن‌العهد وزن‌دهی ضروری به‌نظر می‌رسد. یک توجه به اینکه برای رتبه‌بندی پژوهشگاه‌های مرکز تحقیقاتی به

تشکل‌سازی متریس تصمیم‌گیری و گردآوری داده از 5 گزینه (پژوهشگاه) موجود در میان 13 شاخص ارزیابی کننده نیاز بوده و سابقه‌ای استفاده از یکی از روشن‌العهد وزن‌دهی ضروری به‌نظر می‌رسد. یک توجه به

امریت داده‌های پژوهشگاه‌های پژوهشگاه‌های مرکز تحقیقاتی به

تشکل‌سازی متریس تصمیم‌گیری و گردآوری داده از 5 گزینه (پژوهشگاه) موجود در میان 13 شاخص ارزیابی کننده نیاز بوده و سابقه‌ای استفاده از یکی از روشن‌العهد وزن‌دهی ضروری به‌نظر می‌رسد. یک توجه به

امریت داده‌های پژوهشگاه‌های پژوهشگاه‌های مرکز تحقیقاتی به
به طریق مشابه، برای مجموعه گزینه‌ها و براساس تکنیک‌های شناختی و به‌وجود آوردن گزینه‌های ایجاد می‌شود. به عنوان مثال براساس شناختی اول گزینه‌ها از بالاترین مقدار و ترکیب بروخوردار بوده و بین گزینه‌های دوی یک‌طرفتی با ترکیب یکن و وجود دارد که این مدل به دلیل پویایی و پویوهشته‌های استفاده کد مراحل ذکر شده در بخش سه به شرح زیر اجرا می‌شود:

ایجاد ساختارهای ترکیبی مجزا بر روی مجموعه

جدول 2: وزن شناختهای ترکیبی با استفاده از روش آنالوگی و قضاوت مدیران													
y_{13}	y_{12}	y_{11}	y_{10}	y_{9}	y_{8}	y_{7}	y_{6}	y_{5}	y_{4}	y_{3}	y_{2}	y_{1}	
0.645	0.768	0.756	0.753	0.842	0.904	0.917	0.897	0.886	0.841	0.731	0.687	0.645	
d_{j}	E_{j}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}	y_{11}	
0.782	0.931	1.000	0.994	0.989	0.985	0.982	0.979	0.976	0.973	0.970	0.968	0.966	
W_{j}	$\lambda_{j}W_{j}$	$\sum_{j=1}^{n}\lambda_{j}W_{j}$	0.001	0.003	0.006	0.009	0.011	0.013	0.015	0.017	0.019	0.021	0.023

$y_{4} \Rightarrow dPbPcPcPd$
$y_{5} \Rightarrow dPbPcPcPd$
$y_{1} \Rightarrow dPcPbPcPd$
$y_{2} \Rightarrow bPcPbPd$
$y_{3} \Rightarrow ablcldle$
مشخصات شاخص‌ها (ρk(m)) به ساختمان داده‌رسانی ویژه‌ای آمده است.

<table>
<thead>
<tr>
<th>ρk(m)</th>
<th>ρk/ρk(m)</th>
<th>ρk/ρk(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>c</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>2</td>
</tr>
<tr>
<td>4.5</td>
<td>e</td>
<td>4.5</td>
</tr>
</tbody>
</table>

برای رتبه‌های اولیه برنامه‌های ρk(m) بر روی مجموعه شاخص‌ها d(0,m) به روش فاصله‌ای بر روی مجموعه شاخص‌ها و گزینه‌ها.

\[d(0, a) = \frac{1 + \eta(a)}{2} = \frac{10 + 3.5}{2} = 7 \]

\[d(0, b) = \frac{1 + \eta(b)}{2} = \frac{10 + 2}{2} = 6.25 \]

\[d(0, c) = \frac{1 + \eta(c)}{2} = \frac{10 + 5}{2} = 7.75 \]

\[d(0, d) = \frac{1 + \eta(d)}{2} = \frac{10 + 1}{2} = 5.75 \]

\[d(0, e) = \frac{1 + \eta(e)}{2} = \frac{10.5 + 3.5}{2} = 7 \]

\[\eta_1 = 1 \]

\[\eta_2 = 2 \]

\[\eta_3 = \frac{3 + 4}{2} = 3.5 \]

\[\eta_4 = \frac{3 + 2}{2} = 3.5 \]

\[\eta_5 = \frac{5 + 7}{2} = 6 \]

\[\eta_6 = \frac{5 + 7}{2} = 6 \]

\[\eta_7 = \frac{9 + 12}{2} = 10.5 \]

\[\eta_8 = \frac{9 + 2}{2} = 10.5 \]

\[\eta_9 = \frac{9 + 2}{2} = 10.5 \]

\[\eta_{10} = \frac{9 + 2}{2} = 10.5 \]

\[\eta_{11} = \frac{9 + 2}{2} = 10.5 \]

\[\eta_{12} = \frac{9 + 2}{2} = 10.5 \]

\[\eta_{13} = \frac{9 + 2}{2} = 10.5 \]
جدول ۴. برآورد فواصل $d(0, m_k)$ برای تمام گزینه‌ها نسبت به همه شاخص‌ها

<table>
<thead>
<tr>
<th>y_{13}</th>
<th>y_{12}</th>
<th>y_{11}</th>
<th>y_{10}</th>
<th>y_{9}</th>
<th>y_{8}</th>
<th>y_{7}</th>
<th>y_{6}</th>
<th>y_{5}</th>
<th>y_{4}</th>
<th>y_{3}</th>
<th>y_{2}</th>
<th>y_{1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.70</td>
<td>2.50</td>
<td>2.70</td>
</tr>
<tr>
<td>4.70</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7.70</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7.80</td>
</tr>
</tbody>
</table>

جدول ۵. رتبه‌بندی مطلق فواصل $R(m_k)$ با روش میانگین رتبه‌های پس‌سنون

<table>
<thead>
<tr>
<th>y_{13}</th>
<th>y_{12}</th>
<th>y_{11}</th>
<th>y_{10}</th>
<th>y_{9}</th>
<th>y_{8}</th>
<th>y_{7}</th>
<th>y_{6}</th>
<th>y_{5}</th>
<th>y_{4}</th>
<th>y_{3}</th>
<th>y_{2}</th>
<th>y_{1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>41</td>
</tr>
</tbody>
</table>

جدول ۶. نتایج برای تمام گزینه‌ها $R(m)$

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۰/۵</td>
<td>۸۸۱/۵</td>
<td>۸۸۴/۵</td>
<td>۸۸۰/۵</td>
<td>۸۸۱/۵</td>
<td>۸۸۴/۵</td>
<td>۸۸۱/۵</td>
<td>۸۸۴/۵</td>
<td>۸۸۱/۵</td>
<td>۸۸۴/۵</td>
<td>۸۸۱/۵</td>
<td>۸۸۴/۵</td>
<td>۸۸۱/۵</td>
</tr>
</tbody>
</table>

جایگذاری شده: در نهایت نیز به منظور تعيين گزینه برتر نتایج حاصل از مرحله جمع‌بندی را مورد ملاحظه قرار گرفته‌می‌وه در این بنی بنی‌های مورد گزینه کمتر باشند.

نتایج در جدول ۶ نشان داده می‌شود:

$$R(a) = \sum_{k=1}^{13} R(a_k) = 52.5 + 20.5 + 63.5 + 36.5 + 10.5 + 36.5 + 8.5 + 54.5 + 50 + 17.5 + 5 + 46 + 51$$

$R(a) = 451.5$

بدين ترتيب رتبیندی نتایج در جدول ۶ نشان داده می‌شود: انجام رتبیندی مطلق $R(m_k)$ بر روی فواصل برآورد شده با کمک میانگین رتبه‌های پس‌سنون: در این مرحله نتایج به دست آمده از یک تابع به روش میانگین رتبه‌های پس‌سنون رتبی‌بندی می‌کنیم تا رتبه‌های مطلق $R(m_k)$ با توجه به رابطه (۸) در محدوده زیر به دست آید:

$$1 \leq R(m_k) \leq 65$$

که حد بالایی ۱۵ برای با حاصل ضرب تعداد گزینه‌ها در تعداد شاخص‌های استفاده: $5 \times 13 = 65$

برای نمونه محاسبات رتبه‌های نخست به شکل زیر انجام و سایر نتایج در جدول ۶ ارائه می‌شود:

$$d(0, d_{11}) = 1 < d(0, b_{11}) = 1.5 \rightarrow R(d_{11}) = 1 < R(b_{11}) = 2$$

$$d(0, d_{7}) = d(0, b_{7}) = 1.75 \rightarrow R(d_7) = R(b_7) = \frac{3 + 4}{2} = 3.5$$
تجربه گیری و پیشنهادات

پس از گردآوری داده‌ها و تشکیل ماتریس تجربی، ارزیابی و تحلیل قرار گرفته و رتبه‌بندی جدیدی ایجاد می‌شود[۲].

همانگونه که شکل ۲ نشان می‌دهد، بر مبنای نتایج حاصل از پیکارگیری روش مطوریت چندشاخه‌ای، پژوهش‌های مورد انتخاب در صدر و پس از آنها، پژوهش‌های ورود برای ترتیبی رتبه‌بندی شدند. همانگونه که بیان شد، برای رتبه‌بندی پژوهش‌های مرکز تحقیقاتی از روی ترتیب ارزیابی استفاده گردید: در این رابطه به منظور مقایسه تائید می‌توان از روش‌های موجه در روش‌های کنار چندشاخه چندشاخه‌ای (Multi Attribute Utility theory (MAUT)) استفاده نموده و حاصل را با تأثیر بر برمی‌گردد و در تجربه خلیل وارندی کن[۳].

در روش تئوری مطبوعیت چندشاخه، مطبوعیت از یک هدف و یا از یک شاخه، مشخص کننده بیشترین درجه رضایت بخشی ممکن از آن هدف (شاخه) برای ترتیب می‌باشد. با حل مساله به روش تایب مطبوعیت راه‌حلی به حداکثر رضایت بخشی برای ترتیب کرده ها حاصل خواهدشد. بر مبنای این روش ابتدا با کمک نظر خبرگان حاضر بالا و پایین گذشته شاخه‌های ترتیبی تعبیه و سپس مدل مطبوعیت نک شاخه‌های هم‌هم شاخه‌ها تشکیل می‌شود. سپس با استفاده از مدل مطبوعیت نک شاخه‌ها، مقدار مطبوعیت برای همه شاخه‌ها در گزینه‌ها محاسبه و با کمک این مدل نک شاخه‌ها تابع مطبوعیت چندشاخه‌ای برای هر گزینه تشکیل و نهایتاً گزینه برتر به توجه به مقدار تابع مشخص می‌شود. با این توضیح و درگیر با کمک داده‌های گرداوری شده پژوهش‌های چندشاخه‌ای تحقیقاتی مورد
پرداخته نا، نقاط قوت و ضعف هر یک از این ابزارها شناختی و ضرورت بکارگیری روش‌های مشخص شود.

نوع نتایج محاسبه با این‌ها سه روش یا یکدیگر می‌تواند مثالی برای انجام مطالعات و پژوهشهای بعدی باشد.

با توجه به اینکه این مطالعه در حاشیه اهداف اصلی خود، سعی در معرفی و بکارگیری روش‌های کاربردی برای رتبه‌بندی پژوهشکده‌های مرکز تحقیقات مخابرات داشت، پیشنهاد می‌شود به‌عنوان پژوهش‌آمیز و در نسخه پیشرفت‌تر برخی به مقایسه تطیفی روش‌های مشابه نظیر الکتره، پروتو، آرمستر، فرآیند تحلیل سلسله مراتبی، مجموع وزین ساده و روش مطلوبیت چندشاخ‌سازی می‌شود.

6. اصغری، محمدجواد (1377) تصمیم گیری‌های جنگی‌محرم، تهران: انتشارات دانشگاه تهران.

7. مومی، منصور (1385) مباحث نوین تحقیق در عملیات، تهران: انتشارات دانشگاه مدیریت دانشگاه تهران.

8. Zak, Jacek, (2005) The Comparison of multiobjective ranking methods applied to solve the mass transit systems’ decision problems, proceeding of 16th Mimi Euro conference and 10th meeting of the Euro working group of transportation.

2. محامی، مهدی (1385) جهت نوبه‌نه‌ی انتخاب ورودی پژوهشکده‌های مرکز تحقیقات مخابرات ایران با دو روش MAUT و ORESTE انتخاب، تهران: انتشارات دانشگاه تهران.